
4,_1 _ _ =

NASA Technical Memorandum 104433 ........

///-&D

&o3 ,-,,'B

, .... A Distributed Fault-Detection and

Diagnosis System Using On-Line
Parameter Estimation +

T.-_H. Guo and W.. Me__i!l

Cleveland, OhIO

+

and

A. Duyar

Florida Atlantic University
- Boca Raton, Florida

Prepared for the

International Symposium on Distributed Intelligence Systems

sponsored by the IntemationaI Federation of Automatic Control

.... Technical Committeeon Systerns.Engineering

+ At'ling_ton, Virginia_,A_ugust -13 -15, 199_-1 - _.i-- __...... "

N/ A
(NASA-I M- t04#33) A OI 5TR I+3UT_-O N_gl-2 _696 ....

FAULT-DETECTION ANO OIAGNOSI5 SYSTEM USING +=_

ON-LINE PARAMETER ESTIMATION (NASA) B p
CSCL 09B Unclas

G3/03 0020348





A DISTRIBUTED FAULT-DETECTION AND DIAGNOSIS SYSTEM USING ON-LINE PARAMETER ESTIMATION

T.-H. Guo and W. Merrill

National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio, USA

A. Duyar

Department of Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida, USA

Abstract. This paper describes a model-based fault-detection and diagnosis system based on a distributed system

identification approach. The diagnostic system consists of a two level process including parallel hypothesis testing

modules anti a fault mode identification and estimation module. The proposed system is part of a distributed diagnostic

system for use in an intelligent control system. The proposed approach utilizes a piecewise linear model to predict the

system performance. The deviation between predicted and actual performance is used to identify the associated fault

mode. Each hypothesis testing module is associated with a particular class of fault modes and can be viewed as a

condition monitor in a distributed diagnostic system hierarchy. The results of the hypothesis modules are processed

by the fault-detection and estimation module. Using the results of the on-line diagnosis, the intelligent control system

will be able to accommodate the fault modes, reduce maintenance cost, and increase system availability.

INTRODUCTION

There is a growing demand to improve the control of

systems for enhanced performance with increased reliability,

durability and maintainability. This demand can be met by

improving the individual reliability of system components and

also by an intelligent control system with fault-detection,

diagnostics and accommodation capabilities [1,2]. This paper

focuses on the development of a model-based fault-detection

and diagnosis (FDD) system which can be used as an integral

part of such an intelligent control system.

During the last two decades of the development of fault-
detection methods, the so called model-based fault-detection

approach has received considerable attention [3,4,5,6]. These
schemes basically rely on the idea of analytical redundancy.

As opposed to physical redundancy which uses measurements

from redundant sensors for fault-detection purposes, analytical

redundancy is based on the signals generated by the mathemati-

cal model of the system being considered. These signals are

then compared with the actual measurements obtained from the

system. The residual quantities are generated by comparing the

measured and the model-generated signals. Hence, the model-

based fault-detection and diagnosis is defined as the determina-

tion of faults of a system from the comparison of the measure-

ments of the system with a priori information represented by

the model of the system.

A fault is defined as a malfunction that deteriorates a

plant's ability to perform its specified tasks. Since the faults

alter the system dynamics, they can be modelled as changes in

the system's parameters. The fault-detection task is the act of

identifying the existence of these changes. The fault diagnosis

task is the act of isolating and estimating the magnitude of the

fault. The basis for the isolation of a fault is the fault signa-

ture, i.e. a signal obtained from a diagnostic model defining the
effects associated with a class of faults. A diagnostic model is

obtained by defining the residual vector in such a manner that

its direction is associated with known fault signatures. Further-

more, each signature has to be unique to one fault in order to

accomplish fault isolation. A set of parity relations [3] or a set

of unknown input observers [4], each assigned to be sensitive

to a different fault, can be used for this purpose.

The organization of this paper is as follows. First, the

method of modelling a complex system will be described. This

is followed by a description of diagnosis models which include

process faults. Next, the architecture for fault-detection and

diagnosis is described. Finally, simulation results of fault

diagnosis of the Space Shuttle Main Engine (SSME) are given.

PROCESS MODEL

The nominal condition of a process under study can be

modelled as a discrete, linear, time-invariant system described

by:

x(n+l) = A x(n) + B u(n) (1)
y(n) = C x(n)

where x is the state vector, u is the input vector and y is the

output vector.

The matrices A, B, and C of this model can be deter-

mined by using a multivariable system identification technique.

A system identification algorithm, developed in [7] to deter-

mine these parameters based on the observability indices of the

system from the measurements of the input and output data,

was used in this paper. The A, B, C matrices obtained for this

model will be used as baseline process parameters of the

system. Any changes of these parameters observed through

real thne identification, away from preselected threshold values

are used to detect and diagnose the faults.

Furthermore, if the system is to be operated over a wide

range and a linear model can not accurately represent the

system characteristics then a series of parameter identifications

will be needed to cover the possible range of operation

conditions. A piecewise linear model which links all the



operationconditionscanbedescribedby:

x(nll) = A(y,) x(n) _ B(y,) u(n) (2)

y(n) = C(y,) x(n)

where y, is tile scheduling variable and is a subset of the output

measurement y.

System Degradation Model

In the case of system perfomlance degradation, it is

assumed that only the system matrix A will be affected. The

new system matrix under this fault condition becomes Ah. In

general, the fault model can be represented by:

Af = A + AA (7)

MODELLING THE PROCESS FAULTS

In general, there are three classes of fault modes

covered by the systern performance model of equation (1),

narnely actuator faults, sensor faults and system performance

degradation. In this study, actuator faults are modelled by the

changes of actuation gain matrix B. Sensor faults are modelled

by the changes of observation matrix C. And, system perfor-

mance degradations (dynamic changes) are modelled by the

system characteristic matrix A. Under these assumptions, these

fault modes can be isolated and diagnosed by analyzing the

observed behavior through hypothesis testing which will be

described latter.

Actuator Fault Model

An actuator fault occurs when the actuator output cannot

follow the command signal. The error can be either multiplica-

tive or additive. It can be described by the following equation:

u,(n) : F u(n) , f (3)

where u,t(n) is the actual system input under the actuator fault

condition and uc(n) is the commanded system input. F, is a

diagonal matrix representing the multiplicative distortion of the

command signal and f,o is a constant vector representing the

bias, both with appropriate dimensions.

During normal operation, F, = I and f,o = 0. Different
fault modes will result in different values of F, and f,o. The

values of F, and f,o will be esthnated and used to identify the

corresponding fault modes.

By replacing the input signal u in equation (1) with the

actual input signal u,r, a model for the system with the actuator
faults is obtained.

x(n41) : A x(n) + B F&_(n) + B f,o

y(n) = C x(n)
(4)

BF, is the new input gain matrix and Bf, o is a bias term.

Sensor Fault Model

Shuilar to the way actuator faults were handled, sensor
faults can also be modelled as a combination of muhiplicative

and bias errors:

y,r(n) = F y(n) _ fo (5)

where ya(n) are the sensor outputs through possible failed

sensors and y(n) the actual process outputs. The matrix F, is

a diagonal matrix for the multiplicative error and f,o is a
constant vector for the measurement bias, both with appropriate

dimensions. During normal operation, F, = I and f,o = 0. This

model can represent a wide range of sensor faults, such as
calibration errors (one of the diagonal elements of F. _: 1 and/or

f,o e 0), loss of signals (one of the diagonal element of F, is 0),
drift (f,o _: 0.0),cross wiring (F, _: I) and many others.

The system model of the process with failed sensors can

be obtain as:

x(n+l) = A x(n) + B u(n) (6)

y,t(n) : F C x(n) ÷ f,o

where AA is a matrix representing the effect of the fault mode

under study. The determination of the elements of AA requires

the analysis of the system using a physical model or empirical
data.

The process model of a system with performance

degradation becomes:

x(n_l) = (A + AA) x(n) + B u(n) (8)
y(n) = C x(n)

We now define F,, f,o, F°, f,o and AA as fault paraJne-

ters. The following section describes the strategy of detecting

the fault and estimating the fault parameters using a distributed

on-line parameter identification scheme.

For a complete model that describes all three possible

classes of faults the system equation will be:

x(n_l) = (A + AA) x(n) + BF. u(n) + Bf o (9)

y,r(n) = F C x(n) + fo

FAULT-DETECTION AND DIAGNOSIS

In the fault-detection and diagnosis for the system

modelled by equation (9), one approach is to have an on-line

estimation algorithm for all fault parameters in the equation.

The estimated fault parameters can be compared to the prede-

termined signature of the fault modes of different classes. This

approach is difficult in estimating many fault parameters at the

same time. Also, the signatures of the fault parameters can be

ambiguous if they were estimated by a single module. Thus,

instead of direct estimation of parameter matrices A, B, C, and

their related fault parameters, a two-step approach is proposed.

The first step composed of a group of "Hypothesis Testing

Modules" (HTM) in parallel processing to test each class of

faults. Each module is solely designed to process the in-

put/output data under a specified hypothesis and generate the

fault signature data for diagnostics purposes. The second step

is the fault diagnosis module which checks all the information

obtained from the HTM level, isolates the fault, and determine

its magnitude. Figure I shows the structure of the fault

detection and diagnostic system.

Hypothesis Testing Modules

As illustrated in Figure I, there are three fault parameter

estimation modules in the first data processing layer. These

modules are used for on-line identification of fault parameters

corresponding to hypothesized actuator, sensor or system faults.

The first module process the data under the assumption of

possible actuator faults, i.e. modelled by equation (4). The goal

of this module is to estimate the actuator fault parameters (F,

and f,o) using the on-line input/output data (u, and y) assuming

system matrices A, B and C are known. Since the fault

parameters are the only unknown in equation (4), they can be

estimated by a recursive on-line parameter estimation algorithm.

Likewise, the sensor fault hypothesis testing module uses

equation (6) and the system degeneration testing module uses

equation (8) to estimate their fault parameters. Upon the

estimation of the fault parameters, it is also necessary to

determine the validity of the hypothesis. This is accomplished
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by comparing an output esthnate obtained using the estimated

fault parameters with tile actuM lneasured output. For this

purpose the residual of the proposed model is defined as:

eu(n ) = z_(n) - ._l(n/n-l, H) (i0)

here subscript i mid j refers to tile i'th output and j'th class of

faults, z_(n) is tile measurement of i'th output. It) represents

the hypothesis that the fault belongs to tile j'th class of faults.

_i(n]n-1, H) is the estimation of the i'th output given all the
hlfonnation up to n- l 'th sampling under the hypothesis H). The

values of ell are calculated at each step using the most recen!

estimate of the fault p,ar,'uueters and the statistics of e,j are used

to accept or reject the hypothesis.

Fault Detection and Diagnosis Logic

This module examines ,all tile estimated fault par,'uneter

values and the statistics of the residual vectors aml generates a

conclusion as to the fault status of the system. This is done by

1) cornparhag statistics of the residual vectors agahast preselect-

ed thresholds, 2) comparing the fault parameters against
predetennined signatures, ,'rod 3) comparing tile relative

magnitude of tile statistics of the residual vectors mnong all the

hypothesis testing modules. By examining the relative magni-

tudes of the residual vectors from the different hypothesis

modules we are able to detect the fault, classify the fault type,

,and estimate it magnitude. For example, when operating with

an actuator fault, it is expected that the magnitude of the

residual generated by the first hypothesis module (assuming an

actuator fault) will be significantly smaller than those generated

by other hypothesis modules. Also, tile estimated fault

par,'uneters F, and f,o will give tile indication of tile type of
actuator faults.

Once a fault is detected, it nmy be isolated to the

component that has failed by comparing the fault parameters

with the Iolown signatures of tile fault modes. Measures can

then be taken to compensate for the fault through reconfignra-

tion [21. This diagnosis-induced accommodation includes both

hardware actions (e.g., activating back-up systems) and

software tasks (e.g., adjusting the feedback control appropriate-

ly, or estimating the measurement of a failed sensor). The

diagnostic mid monitoring tasks may be carried out by an on-

bored processor, on-lhle and in real-time, as well as ,'m off-line

processor which ,'umlyzes recorded data for life cycle ,analysis

and preventive maintenance.

AN EXAMPLE:
FAULT-DETECTION AND DIAGNOSIS OF "FILE SSME

The fault-detection and diagnosis (FDD) system based

on fault par,'uneter estimation, developed in this study was

applied to the detection and diagnosis of the actuator and

sensor faults for the space shuttle main engine (SSME). A

linearized model of tile SSME nominal operation is giverJ in

[9,101. A piecewise linear model which covers a wide range of

operation was developed iu 11 l l. The system par,'uneters

developed in [10,1 l] is used as a priori knowledge for the FDD

system.

Tile signature of a fauh mode c,'m usually be obtahaed

through the analysis of physical property or empirical data. In

the Space Shuttle Main Engine study, the comrnottly observed

actuator faults can be classified into four types: valve ball seal

leakage or crack, valve line blockage, stuck v,-dve ,anti loss of

rotational variable displacement transformer (RVDT) signals

[81. A ball seal leakage may cause hlcreased flow rate through

the valve for the same actuator input, causing the fault vector

paran]eter f,o to have a nonzero component associated with the

faulty valve. The value of this nonzero element yields the

amount of leakage. A shaft seal leakage may cause a dia-

phragm rupture artd consequently a stuck valve. This would

cause those elements of F, and f,o associated with tile faulty

valve to ch,'mge from a value of one to a value of zero and

from a value of zero to a nonzero value respectively. A broken

wire in the RVDT system may lead to a signal error, causing

the valve to continuously increase its opening until it is fully
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open. Table 1 describes part of these fault signatures, i.e., it

gives the values of the fault parmneters corresponding to each

signature as well as the values for some combinations of these
faults.

A cornplete nonlinear digital transient model (DTM) of

the SSME was developed by Rocketdyne Division of Rockwell

International Corporation [12]. This nonlinear simulation is

used to simulate the SSME dynarnic responses for hominid

operation and fauh conditions. The inputs of the simulation are

the positions of the oxidizer prebumer oxidizer valve (OPOVt,

mrd fuel prebumer oxidizer valve (FPOV). The measured

simulation outputs are tile chmnber inlet pressure (Pc), mixture

ratio (MR), high pressure fuel turbine speed _5F2), and high

pressure oxidizer turbine speed (SO2). The operating condition

selected for study is at 100% rated power level with nominal
mixture ration of 6.026. A closed loop control (PI comroller)
in the DTM simulation is also active to sirnulate the actual

operation. The sampling time of the system identificaticm is

0.04 second. Pseudo random binary sequences (PRBS) with a

magnitude of 1% of the control corrunand are superimposed on

the command signal. A recursive parameter identification

scheme is used to identify the fault parameters for all the cases

below. In all the following cases, the simulation was started

from steady state.

Case I: OPOV Stuck at Time = 1.0 Second

Figure 2 shows a case in which the OPOV stuck at time
at 1.0 second. In this case tile valve stopped responding to the

input command. The expected parameter values for this type

of fault are F,I 1 = 0, F,22 = 1, f, ol = Cb,_ (the rnagnitude of

bias depends on the valve stuck position and the desired

position of the operating condition) aml f, o2 = 0. Temfinology

used to label fault paranaeters are F,(1,[) = F,I 1, f.o(l) = f, ol,
etc. The sirnuhltion shows that the diagnostic system is not

only able to identify tile correct actuator fault type after the

initial transient but also able to estimate the magnitude of the

bias due to tile fault which can be very important in designing

tile control accommodation for the fault. Figure 3 shows tile

on-line calculated residual defined by equation (I0) under tile

hypothesis of an actuator fault. V',.dues of the residu',d vector
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return to approximately zero after the initial transient. Figure
4 shows the residual values calculated by the module which

hypothesizes system degradation faults. In this figure, the
residual vector elements are at least ten times higher than those

in figure 3. Similarly large residual values were computed by
the third module. It can be seen that these values can be used

to test the validity of the hypothesis modules.
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Case 2: OPOV Ball Seal Leak at Time = 1.0 second

Figure 5 shows a case where an OPOV ball seal leak

occurred at time 1.0 second. During the steady stale operation

before the fault occurs, the fault parameter estimates are F, =

l and fo, l = 0 as expected. After the fault, tire paranreter values

are estimated at F,, = 1, f, ol = 2 (%) and f_o2 = 0. The simuhl-

ticm shows that the diagnostic system is able to identify the

correct paranaeter after the initial transient.

Case 3. FPOV Liae Blockage at Time = 1.0 second

Figure 6 shows a case in which the FPOV line became

blocked at thne 1.0 second. The fault parameter estin_ates start

at the correct values of F, = I and f.ol = 0 prior to 1.0 second.

After the fault, the parameter values are estimated at F, = I, f, ol

= 0 and f=,2 = -2. The simulation shows that the diagnostic

system is able to identify the correct parameter after the initial
transient.

Case 4: Simultaneous OPOV Leakage and FPOV Blockage
In this case, both Case 1 and 2 faults were introduced

at the same time (T = 1.0). The final true parameter values in

this case are F, = 1, f, ol = +2.0 and t",o2= -2.0. Figure 7 shows

that the proposed hypothesis testing module is able to correctly

estimate the fault paran_eter values within 2 to 3 seconds.

Case 5: Bias in Chamber Pressure (Pc) Sensor

Figure 8 shows the results obtained for the case of a

faulty sensor with a bias of 1% on sensor one (chamber

pressure). As expected, the results are that the estimated fault

parameters F, = I and the bias terms f,,, = 0 except f,ol which
is the indicator of Pc measurement bias.

As illustrated in these simulation results, both the fault-

detection and the estimation of the extent of faults can be

detemained by using the proposed approach. These simulations
indicate that a duration of two seconds is sufficient for the fault

detection and diagnosis.

CONCLUSION

A fault-detection and diagnosis system based on

distributed, fault-paranaeter estimation is developed. Actuator,

sensor and system degradation fault modes are considered by

the developed FDD system. In the FDD system, the system

inputs and outputs are first processed by a series of hypothesis

testing modules. Each hypothesis module generates estimates

of selected fault parameters and corresponding residuals. The

fault parameters and residuals generated by the hypothesis

modules are used for fault-detection and diagnosis. The

proposed FDD system is demonstrated by applying it to detect
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actuator and sensor faults added to a simulation of the Space

Shuttle Main Engine. The simulation results show that the

proposed FDD syslem can adequately detect the faults and

estimate their magnitudes. Further research in the application

of this scheme to systern degradation faults is currently

underway.
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